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One of the main difficulties in micromagnetics simulation is the severe time step
constraintintroduced by the exchange field. Using standard explicit integrators leads
to a physical time step of sub-pico seconds, which is often two orders of magnitude
smaller than the fastest physical time scales. Direct implicit integrators require solv-
ing complicated, coupled systems. In this paper, we introduce an implicit method
whose complexity is comparable to solving the scalar heat equation implicitly. This
method is based on a combination of a Gauss—Seidel implementation of a fractional
step implicit solver for the gyromagnetic term, and the projection method for the heat
flow of harmonic maps. This method allows us to carry out fully resolved calculations
for the switching of the magnetization in micron-sized elements 2001 Academic Press

Key Words: Landau—Lifshitz equation; micromagnetics; projection method;
implicit methods.

1. INTRODUCTION

The dynamics of the magnetization distribution in a ferromagnetic thin film is an i
teresting and important problem from both a scientific and a technological point of vie
Customarily, the main interest in these films has been their application in the magn
recording industry. More recently, interest on using them as magnetic memory devi
(MRAM) has given a greater incentive to study this subject. Since defects, impurities, ¢
thermal noise play important roles on the dynamics of the magnetization field in films
nanometer thickness, it also makes an ideal playground for studying some of the nano-¢
physics [4, 7, 8, 10, 18].
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The relaxation process of the magnetization distribution in a ferromagnetic materia
described by the Landau-Lifshitz equation [12, 14],

Mtz—nyH—)I:/l—aMx(MxH), @)
S

where|M| = Mg is the saturation magnetization, and is usually set to be a constant
from the Curie temperature. The first term on the right-hand side is the gyromagnetic te
with y being the gyromagnetic ratio. The second term in the right-hand side is the damp
term, witha being the dimensionless damping coefficient. The téfris the local field,
computed from the Landau-Lifshitz free energy functional:
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H== (@)

1 M )
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In (3), Ais the exchange constaqﬁ—WM |2 is the exchange interaction energy betweer
the spmscb( ) is the energy resultmg from material anisotropy,is the permeability of
vacuum(uo = A x 107"N/A? in the S.1.),—2uoHe - M is the energy resulting from the
external applied fieldR is the volume occupied by the material, and finally the last term il
(3) is the energy resulting from the field induced by the magnetization distribution insi
the material. This induced fields = —VU can be computed by solving

V-M inQ
AU = {O outside, @)

together with the jump conditions
[Ulsie =0

U
av

} o (5)

at the boundary of the domaf. In (5) we denote by],e the jump ofv at boundary
of Q:

[V]jpa(X) = |ylgl v(y) — Iylm v(y).
yeQe yeQ

The solution to Eq. (4), with boundary conditions (5) is
VU0 =V [ VNG-y) - My dy. (6)
Q

whereN(x) = 4 |x| is the Newtonian potential.

The gyromagnetic term in the Landau-Lifshitz equation (1) is a conservative ter
whereas the damping term is dissipative.

Understanding the long-term dynamics of the Landau—-Lifshitz system (1) is of practi
interest in the design of effective mechanisms for switching the magnetization in compt
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memory cells [4, 18]. Numerical simulation has become an important tool in the stu
of both static and dynamic issues in ferromagnetic materials [1, 2, 6, 9, 11, 15, 16,
26]. In the simulation of the magnetization reversal process, it is important to be able
resolve the different small length scales involved, in particular, magnetic domain wa
and magnetic vortices, since these are responsible for the switching anomalies observ
experiments with submicron patterned NiFe arrays [17, 21, 22, 23, 24]. Explicit numeri
schemes, such as fourth-order Runge—Kutta, or predictor—corrector schemes, with <
kind of adaptive time stepping procedure, are currently the most commonly used meth
for the simulation of the Landau-Lifshitz equation. Although explicit schemes may achie
high order of accuracy both in space and time, the time step size is severely constraine
the stability of the numerical scheme. For physical constants characteristic of the perma
(Ms = 8.0 x 10° Ampere/m K, =5.0x 107 J/n?, A=13x 10" J/m y =176 x
101 T-1s71), with a cell sizeAx = 0.004 um (256 grid points in a 1¢m long sample),
and using fourth-order Runge—Kutta, we need to use a time step roughly of the\drder
.25 picoseconds for numerical stability. If the cell size is decreased by a factor of 10,
time stepAt must be reduced by a factor of 100. In addition, in a typical hysteresis loop, t
change in the average magnetization with respect to the change in the applied field bef
very differently near and far from the switching field, with little change far from it, an
an abrupt change as the applied field approaches the switching field. These considers
show the need of schemes for the numerical integration of the Landau-Lifshitz equation
are adaptive in time. Our first step for the construction of such a method is the construc
of a numerical scheme that is unconditionally stable.

In order to overcome the stability constraint of explicit schemes, one usually resort:
implicit schemes [15]. However, because of the strong nonlinearities present in both
gyromagnetic and damping terms in the Landau—Lifshitz equation (1), a direct impli
discretization of the system is not efficient and is difficult to implement. To understand 1
crux of the matter, let us restrict our attention to the case when only the exchange ter
keptin (2). In this casé{ = Am and the Landau-Lifshitz equation (1) reduces to

m¢=—mx Am—m x (m x Am). )

Our goal is to develop a stable numerical scheme for (7) which allows us to use large t
steps. The gyromagnetic term and the damping term will require different treatment.
When only the damping term is present, Eqg. (7) becomes

m; = —m x (M x Am) = Am + |[Vm/|°m. (8)

This equation describes the heat flow for harmonic maps. In [5], a simple projection sche
was introduced for this equation. This scheme was shown to be unconditionally stable
more efficient than other schemes used for the simulation of Eq. (8).

In this paper, we will be mainly concerned with the gyromagnetic term in the Landa
Lifshitz equation:

m; = —m x Am 9)

This equation is the symplectic flow of harmonic maps [3, 25]. We introduce a simple &
efficient scheme for (9) which is also unconditionally stable. The key to this new sche
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is the observation that, because of the vectorial product structure of the equation, a Ga
Seidel type of technique significantly improves the stability property of explicit schem
for the Landau—Lifshitz equation. This Gauss—Seidel technique is then used together
a splitting procedure to obtain an efficient and, more importantly, unconditionally stat
scheme. In addition to the simplicity and unconditional stability, the scheme is also sy
plectic in a certain sense. Combined with the projection scheme for the damping part,
have an unconditionally stable scheme for the full Landau—Lifshitz equation.

We apply our method to the simulation of anomalous switching in patterned submicr
arrays. It was observed experimentally by Jing &hal.[17, 21-24] that trapped magne-
tization vortices are responsible for the switching anomaly. The numerical simulation
this problem is extremely demanding. To calculate the hysteresis loop and the remal
magnetization curve, one needs to run more than 100 evolutions to steady state and, ¢
same time, more than 256 grid points are needed in each direction in order to resolve
vortices and domain walls.

This paper is organized as follows: In Section 2 we study the effect of the vector
nature of the Landau—Lifshitz equation on the stability of several frequently used tir
stepping procedures by analyzing a simple example in detail. We introduce our Gau
Seidel technique and make the important observation that this technique improves
stability properties of the explicit schemes. In Section 3, we introduce a fractional s
procedure for (9) that takes advantage of the Gauss—Seidel technique. The analysis
the previous section suggests that our scheme is unconditionally stable. In Section 4
compare the performance of our scheme with that of two different explicit schemes
the symplectic flow of harmonic maps. In Section 5, we combine our new meth
with the projection method for the heat flow of the harmonic map derived in [5], ar
introduce theGauss—Seidel Projection Methdar the full Landau—Lifshitz equation. In
Section 6 we review some of the switching anomaly experiments, and present nun
ical simulations performed using the Gauss—Seidel Projection Method. We are able
resolve the vortex dynamics and accurately simulate the switching anomaly observe
[17, 21-24].

2. ASIMPLE EXAMPLE: dd—T =—axm

The vectorial structure of the Landau—Lifshitz equation (1) presents some interest
features when time stepping schemes are considered. To appreciate this, let us first cor
the simple linear vectorial equation

dm
E =—axm, (10)
wherea’ = (a;, ay, a3) is a constant vector.

2.1. Standard One-Step Methods

The forward Euler scheme for equation (10) is

m™l=m" — Atax m"), (11)
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or, in its component form,

mj mf — At(a;mj — agmg) m{
mptt [ = | md — At(agm] —aimi) | = A| m} |, (12)
mj*t mj} — At(aym} — a;my) mj

whereAt is the time step size, and

1 513 —ap
A= | —as 1 a; , & =aAt
a -4 1

To discuss the stability of the Euler scheme, we compute the characteristic polynor
of A

det(A—1l) = (1— )3+ (1 - 1) (a2 + a2 +ad)(av?

The three eigenvalues aig = 1, AL = 1+ |a|Ati. Thus, the spectral radius(A) =
v/1+ |al2(At)2 > 1, which implies that the stability region for the Euler scheme contair
only one point (i.e.At = 0).

Similar calculations show the same feature for the second-order Runge—Kutta sche
However, for the fourth-order Runge—Kutta scheme, the three eigenvalues for the cha
teristic polynomial satisfyio| = 1, [A+| = 1 — S(jaJAt)5 + ﬁ(mmt)g, and we have
thatp(A) < 1 provided thatat < gf.

This phenomenon is easy to understand. The spectrum of the system of ordinary di
ential equations (10}, = {—|ali, 0, |ali}, lies on the imaginary axis. It is well known that
the stability regions of the forward Euler and second-order Runge—Kutta schemes do
contain any part of the imaginary axis except the origin. On the other hand, the stabi
regions of the classical third- and fourth-order Runge—Kutta schemes do contain part of
imaginary axis. This leads to the condition of absolute staliity< % for the fourth-order
Runge—Kutta scheme.

2.2. The Gauss—Seidel Approach
We have shown that the usual forward Euler scheme is unstable for the linear equat

dm

— =—axm.
dt

Let us consider the following Gauss—Seidel correction to (11) and (12):

mi mf] — At (am}] — agm})
mptt [ = | m}— At(agmi™ —amj) |. (13)
m3*t mj} — At(amj*t — aom(*t)
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We can rewrite (13) as

n+1 - n
1 0O O my 1 & —& my
& 1 ol |m™ =0 1 & mj (14)
—-a 4a 1 mg+1 0 1 mg
or
m]*t 1 &3 —& m]
m2+1 = —5.3 1- 5.:23 5-1 + 5-25-3 mg
ngrl d,83+a, élég +8az3—a; 1-—&8a3 — é% — 5% mg
n
m;
—A|m (15)
n
ms

The eigenvalues of the transition matéxare

r=1 Ar=1-bx+/bb-2),

whereb = %(|a|2 + ajarazAt)(At)?. Itis easy to see that when®b < 2, or roughly

2
At < —,
lal

the three eigenvalues are different dihd| = 1.
The transition matrixA has the following property, for & b < 2: There exists an
invertible matrixT such that

1 0 0
A=T*(0 1-b b(2—b) T:Tl(é 2>T.
0 —vb2-b) 1-b

Here

s 1-b Vb2 =Db)
—\ —v/b(Z—=h) 1-b

is a symplectic matrix in the sense ti8itJ S= J, where
0 1
=(9 )

Thus, (13) is a natural extension to odd-dimensions of the symplectic schemes propos
[13]. See also [20].
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3. AN IMPLICIT GAUSS-SEIDEL SCHEME FOR THE LANDAU—-LIFSHITZ
EQUATION WITHOUT DAMPING

3.1. A Fractional Step Procedure

We consider the equation
my = —m x Am. (16)

To overcome the nonlinearity of the equation, we consider a simple fractional step sche

m* —m"
Tar oA
17)
mn+l =m"—m" x m*
or
m™*l=m"—m" x (I — AtAp) Im". (18)

Herel is the identity matrix, and\p represents an approximation to the laplacian. In ou
code we used the standard five point approximation.

The advantage of the scheme (18) is that the implicit step is now linear, comparabls
solving heat equations implicitly, and is easy to implement. Itis easy to check that the schq
(18) is consistent with (16) and is first-order accurate in time. However, direct numeri
implementation of (18) shows that the scheme is unstable. It is not hard to underst
where the instability comes from. If one linearizes the difference scheme, (18) reseml
the forward Euler scheme studied in the previous section, which is unstable when app
to a partial differential equation such as (17). Just as in the linear case, we will show t
the scheme can be improved by the Gauss—Seidel technique.

3.2. The Gauss—Seidel Approach

Consider again the equation

m; = —m x Am.
Let
g'=( - AtAp™Im", =123 (19)
Consider
mi*t m} + (g5m§ — g§m})
mptt [ = m}+ (g§mi*t — gftim]) (20)
myt )\ g+ (g Img - gyt imi )
or
1 0 0 mi*t 1 -g§ & m7
98 1 of|m*|=]0 1 —g||m{. (21)
gt —git 1) \mgt) o o 1 /) \m
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The exact stability property of the scheme (21) is difficult to analyze. Numerical expe
mentation suggests that the scheme is unconditionally stable.

4. COMPARISON OF THE PERFORMANCE OF VARIOUS SCHEMES

In this section we compare the performance of three different time stepping schemes
a one-dimensional Landau-Lifshitz equation with no damping:

M; = —M X Myy. (22)
Let
Me = (COIX?(1 — x)?)sin(t), sin(x*(1 — x)?)sin(t), cost)) (23)

be an exact solution of (22) with a forcing terfim= mg; + Me X Meyx. The numerical
solution of (22) with Neumann boundary conditions on [0, 1] will be computed by th
following three schemes.

1. The forward Euler scheme:

i mi + At((Anm3)m§ — (Apm3)m3)
mptt | = | M3+ At((Anm3)m] — (Axmf)md) || (FE)
o+ mj + At((Anmi)m5 — (Apm3)mf)

2. An explicit Gauss—Seidel scheme:

m+ i+ At((Anmg)mg — (Anmg)m3)
mp™ | = mp+At((Anmd)mitt — (ApmPTHmy) . (EGS)
mj ™t mj + At((Anmm3*tt — (Apmpttymi*h)

This is a direct application of the Gauss—Seidel technique to the forward Euler scheme. -
is, we use the recently updated informationrf@r“, mj* in the second and third equations.
3. The implicit Gauss—Seidel scheme

1
mi* mi + (g3m3 — gim3)
n+1 n+1 n+1
m; = m3 + (ggmi™ — g7 'mg) , (IGS)
1 nlondl  ntlondl
m3* m3 + (g7 m5 ™ — gyt tmi )

o' =( —AtA) M, i =123

We first compare the stability constraints for the three schemes. For each scheme
try to find the maximumat corresponding to three different spatial grid sizes so that
stable solutions can be computed ugte= 0.02. The results are shown in Table I. For the
Forward Euler schemet has to be extremely small to get a stable solution up00.02.
The explicit Gauss—Seidel scheme is much more stable but is constrained by the stan
CFL condition with a CFL constar®@ = 0.4. Our implicit Gauss—Seidel scheme seems t
be unconditionally stable.
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TABLE |
Stability Constraint of At for the Three Schemes

FE EGS IGS
AXx = 0.01 At <1 x10° At < 4. x 10°°
AXx = 0.005 At <5.x 108 At <1. x10° No restriction
AX = 0.0025 At <5.x10° At <0.25x 10

We also compare the accuracy of the three schemes. In Table I, we compare the nume
errore(t) at different times for the three schemes, and for the same spatial and temp
resolutiong Ax = 0.01, At = 10°%). Heree(t) = max|my, — me| with me being the exact
solution andmy, the numerical solution. Again, the results show that the implicit Gauss
Seidel method is the most accurate scheme among the three considered here.

5. AN IMPLICIT GAUSS-SEIDEL PROJECTION SCHEME FOR THE FULL
LANDAU-LIFSHITZ EQUATION

For the full Landau-Lifshitz equation (1), we couple the above implicit Gauss—Seic
scheme with the projection method developed earlier in [5], in a fractional step fran
work. SinceM andH have the same physical dimensions, we can Wiite Msh, Hg =
Mshs, He = Mshe, andM = Mgm. Without loss of generality, we will assume that the
material is uniaxial, ané®(m) = Ku(mg + mg). Equation (1) is rewritten as

m; = —poy Msm x h — oy Mg m x m x h, (24)
where
h= m m ———Am + hg + he. 25
MMZ( 2€2 + M) + ——— M2 +hs + (25)
Here we use the notatia®m = (1, 0, 0), & = (0, 1, 0), andes = (0, 0, 1).

The constantoy Ms has dimensions of the reciprocal of time{s Therefore we rescale
in time: t — (uoy Ms)~t, and we rescale the spatial variablle> Lx whereL is the
diameter of2. The equation becomes

m;=—-mxh—amxmx h, (26)
TABLE Il
Accuracy of the Three SchemesAx = 0.01, At = 10°°)

FE EGS IGS
My — Mefl IMp — Mefl IMp — Mefl
T =4.0D-03 1.5514857223D-06 6.4438079370D-06 4.7872164673D-08
T =8.0D-03 4.6784038819D-06 1.0269519915D-05 1.1169120310D-07
T=12D-02 8.9295719960D-06 1.4730269481D-05 1.9962607804D-07
T=16D-02 1.3785291106D-05 2.0275813101D-05 3.0626365978D-07

T = 2.0D-02

5.1322251994D-05

2.3875530795D-05

4.0416547462D-07
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where
h = —Q(mz€; + mge3) + e Am + hs + he. (27)
Here we have defined the dimensionless param@essK, /(uoM2), and
€ = A/(LoMZL?).
For our splitting procedure, we define the vector field:
f = —Q(mz& + maes) + hs + he. (28)
We solve equation

M =-mx (eAm+f) —amxm x (eAm+f) (29)

in three steps:

Step 1: Implicit Gauss—Seidel:

o' = (I —eAtAp) 1 (m! + Atf"),

(30)
o = (I —eAtAp)H(mr + AtF"), =123
m; m} + (g8m§ — gim3)
m; | = m3+ (gimi —gimj) |- (31)
m3 m3 + (gim; — gzm3)
Step 2: Heat flow without constraints:
f* = —Q(mje; + mies) 4+ hg + he (32)
m* m; + a At(e Apmi* + )
ms* | = | My +aAt(eAnmi* + £5) | . (33)
m3* m5 + a At(e Apms* + £3)
Step 3: Projection ont&?:
mrl1+1 my*
1
n+1 _
m; = T m3* | . (34)
mg+l m;*

Note that the stray field is not recomputed using the intermediate valuasro{30) and
(32), but it is computed only once per time step.

6. APPLICATION TO THE SWITCHING ANOMALY PROBLEM

In the series of articles [17, 21-24], an experimental study of the magnetization revel
in submicron patterned arrays of 28@hick NiFe and NiFeCo elements was carried out. A
switching anomaly was reported, and it was found to be related to the presence of traf



GAUSS-SEIDEL METHOD 367

magnetization vortices. The presence of trapped vortices can be detected by compar
hysteresis loop with its corresponding remanent loop.

The hysteresis loop is obtained in the following way: Initially, a positive field of strengt
Ho is applied, and the magnetization is allowed to reach a steady state. Once this st
state is reached, the applied field is reduced by a certain amount, and the sample is :
allowed to reach a steady state. The process continues until we reach a negative fie
strengthHy. Then the process is repeated, increasing the field in small steps until we re
the initial applied field. The hysteresis loop is a plot of the average magnetization at
steady state as a function of the applied field strength.

For the remanent loop, an initial positive field is applied. Once a steady state is reacl
the positive field is switched off, and a negative small field is applied. Once the sam
reaches a steady state, the negative field is switched off, and the sample is allowed to |
to a steady state, which is a remanent state. Then the average magnetization is mea:s
Another (stronger) negative field is applied, and it is switched off when the sample reach
steady state. The process continues until we reach a prescribed negative value of the ay
field. For both the hysteresis and remanent loops, the increments in the applied field v
constant.

A typical remanent loop can be seen in Fig. 1. The loop is characterized by two jun
and three flat pieces. The flat regions correspond to reversible changes in the magnetiz:
when the external field is removed, the magnetization relaxes back to the initial confi
ration. The jumps correspond to irreversible changes. Each flat piece in the remanent
identifies a different stage in the reversal process. These intermediate states are respo
for the switching anomaly reported in [17, 21-24].

To simulate the reversal process, we carried out simulations of the Landau-Lifst
equation using the Gauss—Seidel Projection Method described in the previous sectiol
our implementation, we divided the computational domain into cells, and in each cell
approximated the magnetization by a constant value. We also approximated the stray

11 —— Hysteresis loop
—=— Remanent loop

0.5

_400 _200 0 200 400
H, (Oe)

FIG.1. Hysteresisloopand Remanentloop for 8state; the magnetization reversal occurs at abdis0 Oe.
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by its average value in each cell. This stray field was computed by approxinidtiog
a piecewise constant distribution, and computing the corresponding sum in (6) using |
Fourier Transform (FFT).

The Helmholtz-type equations that appear in steps 1 and 2 were solved via an FFT-bs
Fast Poisson Solver: We applied the FFT in one direction, and the remaining tridia
nal system of equations was solved via Gauss elimination. The computational cost of
method is approximately one third of the computational cost of the standard fourth-or
Runge—Kutta, per time step. In addition, we are able to use a time step which is
order of magnitude larger than the time step necessary for stability of the standard fou
order Runge—Kutta.

We considered a sample of dimensiongrh x 1 um x 200 A. We ran our code with
both 256 and 512 grid points in the in-plane directions, with= 2 picoseconds. The loops
obtained using 256and 512 grid points were virtually identical. The damping coefficient
was fixed atr = 0.1. The maximum field applied wa$y, = 400 Oe, and the field was tilted
one degree with respect to tkeaxis in order to break the symmetry.

In the absence of an external field, two equilibrium states, commonly kno\@stse
andC state, have been observed experimentally. $ktate is shown in Fig. 2(a), and the
C state is shown in Fig. 4(a). Figure 1 shows the hysteresis and remanent loopsSor ¢
state configuration, and Fig. 3 shows the loops fGr state.

The remanent loop in Fig. 1 clearly identifies two steps in the reversal of an S state. -
flat region with near zero averaged magnetization indicates the presence of an interme:
stage in the reversal process. This stage is shown in Fig. 2(b) and is characterized b
presence of aboundary layer where the reversal has not yet occurred. The transition bet
the S state and this intermediate state occurs at abdii0 Oe. In the second stage, the
boundary layer disappears, and the reversal is complete. This occurs atdiy@uDe.

(b)

FIG. 2. Steady state configurations found in the reversal dbatate; the left column shows the divergence
of the in-plane components of the magnetization. The right column is a sketch of the same configuration, sho
the direction of the magnetization. (8)state; (b) Intermediate state: the reversal has occurred in the interior, bi
the boundary has not switched yet.
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e

| —— Hysteresis loop et
—=— Remanent loop

0.5¢

-1F

1

-400 -200 ? 200 400
H0 Oe)

FIG. 3. Hysteresis loop and Remanent loop for {Bestate; the reversal occurs in three steps; at abou
—100 Oe, a vortex appears in the sample, and it is expelled at atioi@ Oe.

(b)

(c)

FIG. 4. Steady state configurations found in the reversal©fstate; the left column shows the divergence of
the in-plane components of the magnetization. The right column is a sketch of the same configuration, sho

the direction of the magnetization. (@) state; (b) intermediate state; (c) vortex nucleated in the interior of the
domain.



370 WANG, GARCIA-CERVERA, AND WEINAN E

1 ;
0.5¢ 1
EV)
£ 0
p
-0.5¢ 1
—— 128 x 128 grid points
v —— 512 x 512 grid points
-1 L L v ‘
-400 -200 0 200 400 600
H0 (Oe)

FIG.5. Hysteresis loops for the reversal ofastate. Only 128 grid points were used in each direction, which
is not enough to resolve the vortex. As a consequence, the critical fields are not captured accurately.

7
Y,

450

420

240 410

400

220 390

y X

FIG. 6. A detailed view of the out-of-plane component of the magnetization in the vortex nucleated in t
domain during the magnetization reversal process.
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The remanent loop in Fig. 3 identifies two different stages in the reversaCo$tate.
The first intermediate state is shown in Fig. 4(b), and is characterized by the the colls
of the left and right end domains of tistate. The transition between t@estate and this
state occurs at about30 Oe. The second intermediate state is shown in Fig. 4(c), and
characterized by the nucleation of a trapped magnetization vortex. The transition oc
at about—90 Oe. An applied field of about170 Oe is needed to expel the vortex, anc
complete the switching. In the numerical simulation of the reversal process, it was neces
to resolve the core of the vortices. To illustrate this, we compare indRigysteresis loop
computed for & state using only 128 grid points in each direction, with the loop compute
with 512 grid points in each direction. With 128 points, the core of the vortex is not we
resolved. The number of steps in the magnetization reversal process is the same in
computations, and the type of steady states that we obtain is the same. Even though the \
is nucleated in the two simulations, the dynamics of the vortex are not captured corre
when using 128 points. As a result, the transition fields are not computed accurately
Fig. 6 we show a detailed view of the out-of-plane component of the magnetization in
vortex nucleated in the interior of the domain during the magnetization reversal proce
computed with 512 grid points in each direction.

In conclusion, we have introduced a simple, efficient, and unconditionally stable sche
for the time integration of the Landau—Lifshitz equation. The complexity of our scheme
comparable to that of solving the linear heat equation with an implicit scheme. This mett
allows us to resolve the core of the vortices nucleated in the interior of the domain dur
the magnetization reversal process.
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