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One of the main difficulties in micromagnetics simulation is the severe time step
constraint introduced by the exchange field. Using standard explicit integrators leads
to a physical time step of sub-pico seconds, which is often two orders of magnitude
smaller than the fastest physical time scales. Direct implicit integrators require solv-
ing complicated, coupled systems. In this paper, we introduce an implicit method
whose complexity is comparable to solving the scalar heat equation implicitly. This
method is based on a combination of a Gauss–Seidel implementation of a fractional
step implicit solver for the gyromagnetic term, and the projection method for the heat
flow of harmonic maps. This method allows us to carry out fully resolved calculations
for the switching of the magnetization in micron-sized elements.c© 2001 Academic Press
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1. INTRODUCTION

The dynamics of the magnetization distribution in a ferromagnetic thin film is an in-
teresting and important problem from both a scientific and a technological point of view.
Customarily, the main interest in these films has been their application in the magnetic
recording industry. More recently, interest on using them as magnetic memory devices
(MRAM) has given a greater incentive to study this subject. Since defects, impurities, and
thermal noise play important roles on the dynamics of the magnetization field in films of
nanometer thickness, it also makes an ideal playground for studying some of the nano-scale
physics [4, 7, 8, 10, 18].
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The relaxation process of the magnetization distribution in a ferromagnetic material is
described by the Landau–Lifshitz equation [12, 14],

M t = −γM ×H− γα
Ms

M × (M ×H), (1)

where|M | = Ms is the saturation magnetization, and is usually set to be a constant far
from the Curie temperature. The first term on the right-hand side is the gyromagnetic term,
with γ being the gyromagnetic ratio. The second term in the right-hand side is the damping
term, withα being the dimensionless damping coefficient. The termH is the local field,
computed from the Landau–Lifshitz free energy functional:

H = − δF

δM
(2)

F [M ] = 1

2

∫
Ä

{
8

(
M
Ms

)
+ A

M2
s

|∇M |2− 2µ0He ·M
}

dx+ µ0

2

∫
R3
|∇U |2 dx. (3)

In (3), A is the exchange constant,AM2
s
|∇M |2 is the exchange interaction energy between

the spins,8
(

M
Ms

)
is the energy resulting from material anisotropy,µ0 is the permeability of

vacuum(µ0 = 4π × 10−7N/A2 in the S.I.),−2µ0He ·M is the energy resulting from the
external applied field,Ä is the volume occupied by the material, and finally the last term in
(3) is the energy resulting from the field induced by the magnetization distribution inside
the material. This induced fieldHs = −∇U can be computed by solving

1U =
{∇ ·M in Ä

0 outsideÄ,
(4)

together with the jump conditions

[U ]∂Ä = 0
(5)[

∂U

∂ν

]
∂Ä

= −M · ν

at the boundary of the domainÄ. In (5) we denote by [v]∂Ä the jump ofv at boundary
of Ä:

[v]|∂Ä(x) = lim
y→x

y∈Ǟc

v(y)− lim
y→x
y∈Ä

v(y).

The solution to Eq. (4), with boundary conditions (5) is

∇U (x) = ∇
∫
Ä

∇N(x − y) ·M(y) dy, (6)

whereN(x) = − 1
4π

1
|x| is the Newtonian potential.

The gyromagnetic term in the Landau–Lifshitz equation (1) is a conservative term,
whereas the damping term is dissipative.

Understanding the long-term dynamics of the Landau–Lifshitz system (1) is of practical
interest in the design of effective mechanisms for switching the magnetization in computer
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memory cells [4, 18]. Numerical simulation has become an important tool in the study
of both static and dynamic issues in ferromagnetic materials [1, 2, 6, 9, 11, 15, 16, 19,
26]. In the simulation of the magnetization reversal process, it is important to be able to
resolve the different small length scales involved, in particular, magnetic domain walls,
and magnetic vortices, since these are responsible for the switching anomalies observed in
experiments with submicron patterned NiFe arrays [17, 21, 22, 23, 24]. Explicit numerical
schemes, such as fourth-order Runge–Kutta, or predictor–corrector schemes, with some
kind of adaptive time stepping procedure, are currently the most commonly used methods
for the simulation of the Landau–Lifshitz equation. Although explicit schemes may achieve
high order of accuracy both in space and time, the time step size is severely constrained by
the stability of the numerical scheme. For physical constants characteristic of the permalloy
(Ms = 8.0× 105 Ampere/m, Ku = 5.0× 102 J/m3, A = 1.3× 10−11 J/m, γ = 1.76×
1011 T−1 s−1), with a cell size1x = 0.004µm (256 grid points in a 1-µm long sample),
and using fourth-order Runge–Kutta, we need to use a time step roughly of the order1t ≈
.25 picoseconds for numerical stability. If the cell size is decreased by a factor of 10, the
time step1t must be reduced by a factor of 100. In addition, in a typical hysteresis loop, the
change in the average magnetization with respect to the change in the applied field behaves
very differently near and far from the switching field, with little change far from it, and
an abrupt change as the applied field approaches the switching field. These considerations
show the need of schemes for the numerical integration of the Landau–Lifshitz equation that
are adaptive in time. Our first step for the construction of such a method is the construction
of a numerical scheme that is unconditionally stable.

In order to overcome the stability constraint of explicit schemes, one usually resorts to
implicit schemes [15]. However, because of the strong nonlinearities present in both the
gyromagnetic and damping terms in the Landau–Lifshitz equation (1), a direct implicit
discretization of the system is not efficient and is difficult to implement. To understand the
crux of the matter, let us restrict our attention to the case when only the exchange term is
kept in (2). In this caseH = 1m and the Landau–Lifshitz equation (1) reduces to

mt = −m×1m−m× (m×1m). (7)

Our goal is to develop a stable numerical scheme for (7) which allows us to use large time
steps. The gyromagnetic term and the damping term will require different treatment.

When only the damping term is present, Eq. (7) becomes

mt = −m× (m×1m) = 1m+ |∇m|2m. (8)

This equation describes the heat flow for harmonic maps. In [5], a simple projection scheme
was introduced for this equation. This scheme was shown to be unconditionally stable and
more efficient than other schemes used for the simulation of Eq. (8).

In this paper, we will be mainly concerned with the gyromagnetic term in the Landau–
Lifshitz equation:

mt = −m×1m (9)

This equation is the symplectic flow of harmonic maps [3, 25]. We introduce a simple and
efficient scheme for (9) which is also unconditionally stable. The key to this new scheme
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is the observation that, because of the vectorial product structure of the equation, a Gauss–
Seidel type of technique significantly improves the stability property of explicit schemes
for the Landau–Lifshitz equation. This Gauss–Seidel technique is then used together with
a splitting procedure to obtain an efficient and, more importantly, unconditionally stable
scheme. In addition to the simplicity and unconditional stability, the scheme is also sym-
plectic in a certain sense. Combined with the projection scheme for the damping part, we
have an unconditionally stable scheme for the full Landau–Lifshitz equation.

We apply our method to the simulation of anomalous switching in patterned submicron
arrays. It was observed experimentally by Jing Shiet al. [17, 21–24] that trapped magne-
tization vortices are responsible for the switching anomaly. The numerical simulation of
this problem is extremely demanding. To calculate the hysteresis loop and the remanent
magnetization curve, one needs to run more than 100 evolutions to steady state and, at the
same time, more than 256 grid points are needed in each direction in order to resolve the
vortices and domain walls.

This paper is organized as follows: In Section 2 we study the effect of the vectorial
nature of the Landau–Lifshitz equation on the stability of several frequently used time
stepping procedures by analyzing a simple example in detail. We introduce our Gauss–
Seidel technique and make the important observation that this technique improves the
stability properties of the explicit schemes. In Section 3, we introduce a fractional step
procedure for (9) that takes advantage of the Gauss–Seidel technique. The analysis from
the previous section suggests that our scheme is unconditionally stable. In Section 4, we
compare the performance of our scheme with that of two different explicit schemes for
the symplectic flow of harmonic maps. In Section 5, we combine our new method
with the projection method for the heat flow of the harmonic map derived in [5], and
introduce theGauss–Seidel Projection Methodfor the full Landau–Lifshitz equation. In
Section 6 we review some of the switching anomaly experiments, and present numer-
ical simulations performed using the Gauss–Seidel Projection Method. We are able to
resolve the vortex dynamics and accurately simulate the switching anomaly observed in
[17, 21–24].

2. A SIMPLE EXAMPLE: dm
dt = −a× m

The vectorial structure of the Landau–Lifshitz equation (1) presents some interesting
features when time stepping schemes are considered. To appreciate this, let us first consider
the simple linear vectorial equation

dm
dt
= −a×m, (10)

whereaT = (a1,a2,a3) is a constant vector.

2.1. Standard One-Step Methods

The forward Euler scheme for equation (10) is

mn+1 = mn −1t (a×mn), (11)
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or, in its component form,


mn+1

1

mn+1
2

mn+1
3

 =


mn
1 −1t

(
a2mn

3 − a3mn
2

)
mn

2 −1t
(
a3mn

1 − a1mn
3

)
mn

3 −1t
(
a1mn

2 − a2mn
1

)
 = A


mn

1

mn
2

mn
3

, (12)

where1t is the time step size, and

A =

 1 ã3 −ã2

−ã3 1 ã1

ã2 −ã1 1

 , ãi = ãi1t.

To discuss the stability of the Euler scheme, we compute the characteristic polynomial
of A

det(A− λI ) = (1− λ)3+ (1− λ)(a2
1 + a2

2 + a2
3

)
(1t)2.

The three eigenvalues areλ0 = 1, λ± = 1± |a|1t i . Thus, the spectral radiusρ(A) =√
1+ |a|2(1t)2 > 1, which implies that the stability region for the Euler scheme contains

only one point (i.e.,1t = 0).
Similar calculations show the same feature for the second-order Runge–Kutta scheme.

However, for the fourth-order Runge–Kutta scheme, the three eigenvalues for the charac-
teristic polynomial satisfy|λ0| = 1, |λ±| = 1− 1

72(|a|1t)6+ 1
(24)2 (|a|1t)8, and we have

thatρ(A) ≤ 1 provided that1t ≤
√

8
|a| .

This phenomenon is easy to understand. The spectrum of the system of ordinary differ-
ential equations (10),λ = {−|a|i, 0, |a|i }, lies on the imaginary axis. It is well known that
the stability regions of the forward Euler and second-order Runge–Kutta schemes do not
contain any part of the imaginary axis except the origin. On the other hand, the stability
regions of the classical third- and fourth-order Runge–Kutta schemes do contain part of the
imaginary axis. This leads to the condition of absolute stability1t ≤

√
8
|a| for the fourth-order

Runge–Kutta scheme.

2.2. The Gauss–Seidel Approach

We have shown that the usual forward Euler scheme is unstable for the linear equation

dm
dt
= −a×m.

Let us consider the following Gauss–Seidel correction to (11) and (12):


mn+1

1

mn+1
2

mn+1
3

 =


mn
1 −1t

(
a2mn

3 − a3mn
2

)
mn

2 −1t
(
a3mn+1

1 − a1mn
3

)
mn

3 −1t
(
a1mn+1

2 − a2mn+1
1

)
 . (13)
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We can rewrite (13) as

 1 0 0

ã3 1 0

−ã2 ã1 1




mn+1
1

mn+1
2

mn+1
3

 =
1 ã3 −ã2

0 1 ã1

0 0 1


mn

1

mn
2

mn
3

 (14)

or 
mn+1

1

mn+1
2

mn+1
3

 =


1 ã3 −ã2

−ã3 1− ã2
3 ã1+ ã2ã3

ã1ã3+ ã2 ã1ã2
3+ ã2ã3− ã1 1− ã1ã2ã3− ã2

1− ã2
2


mn

1

mn
2

mn
3



= A


mn

1

mn
2

mn
3

 (15)

The eigenvalues of the transition matrixA are

λ0 = 1, λ± = 1− b±
√

b(b− 2),

whereb = 1
2(|a|2+ a1a2a31t)(1t)2. It is easy to see that when 0< b < 2, or roughly

1t <
2

|a| ,

the three eigenvalues are different and|λ±| = 1.
The transition matrixA has the following property, for 0< b < 2: There exists an

invertible matrixT such that

A = T−1

1 0 0

0 1− b
√

b(2− b)

0 −√b(2− b) 1− b

 T = T−1

(
1 0
0 S

)
T.

Here

S=
(

1− b
√

b(2− b)

−√b(2− b) 1− b

)

is a symplectic matrix in the sense thatST J S= J, where

J =
(

0 1
−1 0

)
.

Thus, (13) is a natural extension to odd-dimensions of the symplectic schemes proposed in
[13]. See also [20].
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3. AN IMPLICIT GAUSS–SEIDEL SCHEME FOR THE LANDAU–LIFSHITZ

EQUATION WITHOUT DAMPING

3.1. A Fractional Step Procedure

We consider the equation

mt = −m×1m. (16)

To overcome the nonlinearity of the equation, we consider a simple fractional step scheme

m∗ −mn

1t
= 1hm∗

(17)
mn+1 = mn −mn ×m∗

or

mn+1 = mn −mn × (I −1t1h)
−1mn. (18)

Here I is the identity matrix, and1h represents an approximation to the laplacian. In our
code we used the standard five point approximation.

The advantage of the scheme (18) is that the implicit step is now linear, comparable to
solving heat equations implicitly, and is easy to implement. It is easy to check that the scheme
(18) is consistent with (16) and is first-order accurate in time. However, direct numerical
implementation of (18) shows that the scheme is unstable. It is not hard to understand
where the instability comes from. If one linearizes the difference scheme, (18) resembles
the forward Euler scheme studied in the previous section, which is unstable when applied
to a partial differential equation such as (17). Just as in the linear case, we will show that
the scheme can be improved by the Gauss–Seidel technique.

3.2. The Gauss–Seidel Approach

Consider again the equation

mt = −m×1m.

Let

gn
i = (I −1t1h)

−1mn
i , i = 1, 2, 3. (19)

Consider 
mn+1

1

mn+1
2

mn+1
3

 =


mn
1 +

(
gn

2mn
3 − gn

3mn
2

)
mn

2 +
(
gn

3mn+1
1 − gn+1

1 mn
3

)
mn

3 +
(
gn+1

1 mn+1
2 − gn+1

2 mn+1
1

)
 (20)

or 
1 0 0

−gn
3 1 0

gn+1
2 −gn+1

1 1




mn+1
1

mn+1
2

mn+1
3

 =


1 −gn
3 gn

2

0 1 −gn+1
1

0 0 1




mn
1

mn
2

mn
3

 . (21)
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The exact stability property of the scheme (21) is difficult to analyze. Numerical experi-
mentation suggests that the scheme is unconditionally stable.

4. COMPARISON OF THE PERFORMANCE OF VARIOUS SCHEMES

In this section we compare the performance of three different time stepping schemes for
a one-dimensional Landau–Lifshitz equation with no damping:

mt = −m×mxx. (22)

Let

me = (cos(x2(1− x)2)sin(t), sin(x2(1− x)2)sin(t), cos(t)) (23)

be an exact solution of (22) with a forcing termf = met +me×mexx. The numerical
solution of (22) with Neumann boundary conditions on [0, 1] will be computed by the
following three schemes.

1. The forward Euler scheme:
mn+1

1

mn+1
2

mn+1
3

 =


mn
1 +1t

((
1hmn

2

)
mn

3 −
(
1hmn

3

)
mn

2

)
mn

2 +1t
((
1hmn

3

)
mn

1 −
(
1hmn

1

)
mn

3

)
mn

3 +1t
((
1hmn

1

)
mn

2 −
(
1hmn

2

)
mn

1

)
 . (FE)

2. An explicit Gauss–Seidel scheme:
mn+1

1

mn+1
2

mn+1
3

 =


mn
1 +1t

((
1hmn

2

)
mn

3 −
(
1hmn

3

)
mn

2

)
mn

2 +1t
((
1hmn

3

)
mn+1

1 − (1hmn+1
1

)
mn

3

)
mn

3 +1t
((
1hmn+1

1

)
mn+1

2 − (1hmn+1
2

)
mn+1

1

)
 . (EGS)

This is a direct application of the Gauss–Seidel technique to the forward Euler scheme. That
is, we use the recently updated information formn+1

1 ,mn1
2 in the second and third equations.

3. The implicit Gauss–Seidel scheme
mn+1

1

mn+1
2

mn+1
3

 =


mn
1 +

(
gn

2mn
3 − gn

3mn
2

)
mn

2 +
(
gn

3mn+1
1 − gn+1

1 mn
3

)
mn

3 +
(
gn+1

1 mn+1
2 − gn+1

2 mn+1
1

)
, (IGS)

gn
i = (I −1t1h)

−1mn
i , i = 1, 2, 3.

We first compare the stability constraints for the three schemes. For each scheme, we
try to find the maximum1t corresponding to three different spatial grid sizes1x so that
stable solutions can be computed up toT = 0.02. The results are shown in Table I. For the
Forward Euler scheme,1t has to be extremely small to get a stable solution up toT = 0.02.
The explicit Gauss–Seidel scheme is much more stable but is constrained by the standard
CFL condition with a CFL constantC = 0.4. Our implicit Gauss–Seidel scheme seems to
be unconditionally stable.
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TABLE I

Stability Constraint of ∆t for the Three Schemes

FE EGS IGS

1x = 0.01 1t ≤ 1.× 10−6 1t ≤ 4.× 10−5

1x = 0.005 1t ≤ 5.× 10−8 1t ≤ 1.× 10−5 No restriction
1x = 0.0025 1t ≤ 5.× 10−9 1t ≤ 0.25× 10−6

We also compare the accuracy of the three schemes. In Table II, we compare the numerical
error e(t) at different times for the three schemes, and for the same spatial and temporal
resolutions(1x = 0.01,1t = 10−6). Heree(t) = max|mh −me| with me being the exact
solution andmh the numerical solution. Again, the results show that the implicit Gauss–
Seidel method is the most accurate scheme among the three considered here.

5. AN IMPLICIT GAUSS–SEIDEL PROJECTION SCHEME FOR THE FULL

LANDAU–LIFSHITZ EQUATION

For the full Landau–Lifshitz equation (1), we couple the above implicit Gauss–Seidel
scheme with the projection method developed earlier in [5], in a fractional step frame-
work. SinceM andH have the same physical dimensions, we can writeH = Msh,Hs =
Mshs,He = Mshe, andM = Msm. Without loss of generality, we will assume that the
material is uniaxial, and8(m) = Ku(m2

2+m2
3). Equation (1) is rewritten as

mt = −µ0γMsm× h− µ0γMsα m×m× h, (24)

where

h = − Ku

µ0M2
s

(m2e2+m3e3)+ A

µ0M2
s

1m+ hs + he. (25)

Here we use the notatione1 = (1, 0, 0), e2 = (0, 1, 0), ande3 = (0, 0, 1).
The constantµ0γMs has dimensions of the reciprocal of time (s−1). Therefore we rescale

in time: t → (µ0γMs)
−1t , and we rescale the spatial variablex→ Lx where L is the

diameter ofÄ. The equation becomes

mt = −m× h− αm×m× h, (26)

TABLE II

Accuracy of the Three Schemes (∆x = 0.01, ∆t = 10−6)

FE EGS IGS
‖mh −me‖∞ ‖mh −me‖∞ ‖mh −me‖∞

T = 4.0D-03 1.5514857223D-06 6.4438079370D-06 4.7872164673D-08
T = 8.0D-03 4.6784038819D-06 1.0269519915D-05 1.1169120310D-07
T = 1.2D-02 8.9295719960D-06 1.4730269481D-05 1.9962607804D-07
T = 1.6D-02 1.3785291106D-05 2.0275813101D-05 3.0626365978D-07
T = 2.0D-02 5.1322251994D-05 2.3875530795D-05 4.0416547462D-07
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where

h = −Q(m2e2+m3e3)+ ε1m+ hs + he. (27)

Here we have defined the dimensionless parametersQ = Ku/(µ0M2
s ), and

ε = A/(µ0M2
s L2).

For our splitting procedure, we define the vector field:

f = −Q(m2e2+m3e3)+ hs + he. (28)

We solve equation

mt = −m× (ε1m+ f )− αm×m× (ε1m+ f ) (29)

in three steps:

Step 1: Implicit Gauss–Seidel:

gn
i = (I − ε1t1h)

−1
(
mn

i +1t f n
i

)
,

g∗i = (I − ε1t1h)
−1
(
m∗i +1t f n

i

)
, i = 1, 2, 3

(30)

m∗1
m∗2
m∗3

 =


mn
1 +

(
gn

2mn
3 − gn

3mn
2

)
mn

2 +
(
gn

3m∗1 − g∗1mn
3

)
mn

3 + (g∗1m∗2 − g∗2m∗2)

 . (31)

Step 2: Heat flow without constraints:

f∗ = −Q(m∗2e2+m∗3e3)+ hn
s + he (32)m∗∗1

m∗∗2
m∗∗3

 =
m∗1 + α1t (ε1hm∗∗1 + f ∗1 )

m∗2 + α1t (ε1hm∗∗2 + f ∗2 )

m∗3 + α1t (ε1hm∗∗3 + f ∗3 )

 . (33)

Step 3: Projection ontoS2: 
mn+1

1

mn+1
2

mn+1
3

 = 1

|m∗∗|

m∗∗1
m∗∗2
m∗∗3

 . (34)

Note that the stray field is not recomputed using the intermediate values ofm in (30) and
(32), but it is computed only once per time step.

6. APPLICATION TO THE SWITCHING ANOMALY PROBLEM

In the series of articles [17, 21–24], an experimental study of the magnetization reversal
in submicron patterned arrays of 200Å thick NiFe and NiFeCo elements was carried out. A
switching anomaly was reported, and it was found to be related to the presence of trapped
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magnetization vortices. The presence of trapped vortices can be detected by comparing a
hysteresis loop with its corresponding remanent loop.

The hysteresis loop is obtained in the following way: Initially, a positive field of strength
H0 is applied, and the magnetization is allowed to reach a steady state. Once this steady
state is reached, the applied field is reduced by a certain amount, and the sample is again
allowed to reach a steady state. The process continues until we reach a negative field of
strengthH0. Then the process is repeated, increasing the field in small steps until we reach
the initial applied field. The hysteresis loop is a plot of the average magnetization at the
steady state as a function of the applied field strength.

For the remanent loop, an initial positive field is applied. Once a steady state is reached,
the positive field is switched off, and a negative small field is applied. Once the sample
reaches a steady state, the negative field is switched off, and the sample is allowed to relax
to a steady state, which is a remanent state. Then the average magnetization is measured.
Another (stronger) negative field is applied, and it is switched off when the sample reaches a
steady state. The process continues until we reach a prescribed negative value of the applied
field. For both the hysteresis and remanent loops, the increments in the applied field were
constant.

A typical remanent loop can be seen in Fig. 1. The loop is characterized by two jumps
and three flat pieces. The flat regions correspond to reversible changes in the magnetization:
when the external field is removed, the magnetization relaxes back to the initial configu-
ration. The jumps correspond to irreversible changes. Each flat piece in the remanent loop
identifies a different stage in the reversal process. These intermediate states are responsible
for the switching anomaly reported in [17, 21–24].

To simulate the reversal process, we carried out simulations of the Landau–Lifshitz
equation using the Gauss–Seidel Projection Method described in the previous section. In
our implementation, we divided the computational domain into cells, and in each cell we
approximated the magnetization by a constant value. We also approximated the stray field

FIG. 1. Hysteresis loop and Remanent loop for theSstate; the magnetization reversal occurs at about−150 Oe.
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by its average value in each cell. This stray field was computed by approximatingM by
a piecewise constant distribution, and computing the corresponding sum in (6) using Fast
Fourier Transform (FFT).

The Helmholtz-type equations that appear in steps 1 and 2 were solved via an FFT-based
Fast Poisson Solver: We applied the FFT in one direction, and the remaining tridiago-
nal system of equations was solved via Gauss elimination. The computational cost of our
method is approximately one third of the computational cost of the standard fourth-order
Runge–Kutta, per time step. In addition, we are able to use a time step which is an
order of magnitude larger than the time step necessary for stability of the standard fourth-
order Runge–Kutta.

We considered a sample of dimensions 1µm× 1 µm× 200 Å. We ran our code with
both 256 and 512 grid points in the in-plane directions, with1t = 2 picoseconds. The loops
obtained using 2562 and 5122 grid points were virtually identical. The damping coefficient
was fixed atα = 0.1. The maximum field applied wasH0 = 400 Oe, and the field was tilted
one degree with respect to thex-axis in order to break the symmetry.

In the absence of an external field, two equilibrium states, commonly known asS state
andC state, have been observed experimentally. TheSstate is shown in Fig. 2(a), and the
C state is shown in Fig. 4(a). Figure 1 shows the hysteresis and remanent loops for anS
state configuration, and Fig. 3 shows the loops for aC state.

The remanent loop in Fig. 1 clearly identifies two steps in the reversal of an S state. The
flat region with near zero averaged magnetization indicates the presence of an intermediate
stage in the reversal process. This stage is shown in Fig. 2(b) and is characterized by the
presence of a boundary layer where the reversal has not yet occurred. The transition between
the S state and this intermediate state occurs at about−100 Oe. In the second stage, the
boundary layer disappears, and the reversal is complete. This occurs at about−170 Oe.

FIG. 2. Steady state configurations found in the reversal of anSstate; the left column shows the divergence
of the in-plane components of the magnetization. The right column is a sketch of the same configuration, showing
the direction of the magnetization. (a)Sstate; (b) Intermediate state: the reversal has occurred in the interior, but
the boundary has not switched yet.
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FIG. 3. Hysteresis loop and Remanent loop for theC state; the reversal occurs in three steps; at about
−100 Oe, a vortex appears in the sample, and it is expelled at about−170 Oe.

FIG. 4. Steady state configurations found in the reversal of aC state; the left column shows the divergence of
the in-plane components of the magnetization. The right column is a sketch of the same configuration, showing
the direction of the magnetization. (a)C state; (b) intermediate state; (c) vortex nucleated in the interior of the
domain.
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FIG. 5. Hysteresis loops for the reversal of aC state. Only 128 grid points were used in each direction, which
is not enough to resolve the vortex. As a consequence, the critical fields are not captured accurately.

FIG. 6. A detailed view of the out-of-plane component of the magnetization in the vortex nucleated in the
domain during the magnetization reversal process.
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The remanent loop in Fig. 3 identifies two different stages in the reversal of aC state.
The first intermediate state is shown in Fig. 4(b), and is characterized by the the collapse
of the left and right end domains of theC state. The transition between theC state and this
state occurs at about−30 Oe. The second intermediate state is shown in Fig. 4(c), and is
characterized by the nucleation of a trapped magnetization vortex. The transition occurs
at about−90 Oe. An applied field of about−170 Oe is needed to expel the vortex, and
complete the switching. In the numerical simulation of the reversal process, it was necessary
to resolve the core of the vortices. To illustrate this, we compare in Fig. 5 a hysteresis loop
computed for aC state using only 128 grid points in each direction, with the loop computed
with 512 grid points in each direction. With 128 points, the core of the vortex is not well
resolved. The number of steps in the magnetization reversal process is the same in both
computations, and the type of steady states that we obtain is the same. Even though the vortex
is nucleated in the two simulations, the dynamics of the vortex are not captured correctly
when using 128 points. As a result, the transition fields are not computed accurately. In
Fig. 6 we show a detailed view of the out-of-plane component of the magnetization in the
vortex nucleated in the interior of the domain during the magnetization reversal process,
computed with 512 grid points in each direction.

In conclusion, we have introduced a simple, efficient, and unconditionally stable scheme
for the time integration of the Landau–Lifshitz equation. The complexity of our scheme is
comparable to that of solving the linear heat equation with an implicit scheme. This method
allows us to resolve the core of the vortices nucleated in the interior of the domain during
the magnetization reversal process.
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